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Abstract. The signature of a finite-dimensional orthogonal representation of a simple Lie
group is the difference between the number of positive and negative signs in the diagonal form
of its symmetric bilinear invariant. We derive the expressions for the signatures of all finite-
dimensional representations of the de Sitter groups SO(4, 1) and SO(3, 2) in two ways. One by
means of character values of appropriate elements of adjoint order two on the representation
and the other through generating functions.

1. Introduction

Let us first define the signature of a finite-dimensional representation of a simple Lie algebra
over the complex or real field in a way which is more general than our immediate needs
and more general than the traditional definition.

A signature of an irreducible representation3 of a simple Lie algebraL overC is the
character value on3 of an (inner) automorphism ofL whose adjoint order is two.

Note that under the definition such a Lie algebra has several signatures associated with it
if its rank is greater than one. Indeed, for each conjugacy class of the automorphisms there
is one signature. In the traditional way, the signatures are associated with non-compact real
forms of simple Lie algebras. It is well known that there is a one-to-one correspondence
between conjugacy classes of the automorphisms of order two of the algebras (overC) and
the real forms of the simple Lie algebra. We call each such automorphism thedefining
automorphismfor the corresponding real form. In case a real form corresponds to a inner
automorphism, i.e. the automorphism is induced by an element of the underlying group,
then the definition above can be extended to the signature of a real form as follows.

The signature of an irreducible representation of a real form is the character value of
the element defining the automorphism on the representation.
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Even that is not always the traditional signature. For two reasons. It is defined for
all representations not only those with a symmetric bilinear invariant form (orthogonal
representations), and it may differ from the usual definition by a phase factor. (There is an
ambiguity of only a sign in the traditional definition of the signature.)

In order to make use of such a definition, one needs to be familiar with the general
description of the automorphims of finite order and their action on representation spaces.
Such a description is available [10] but it is not reproduced here in full generality since
only a very special part of it is needed for our purposes in this paper. Nevertheless, we
will draw on it when recalling these automorphisms. In addition, one needs to know which
representations are orthogonal or symplectic or neither of the two. That information is
readily available since the work of Dynkin [23], in particular see [24, p 5].

The question about signatures in some degree of generality (for all orthogonal
representations of Lie algebras of a particular type) was first raised in [8]. Recently in
a series of overlapping papers [17–21] another approach to the problem was taken and,
in principle, signatures of orthogonal representations of the real forms (defined by inner
automorphisms of order 2) of the classical Lie algebras as well as of the real forms of the
exceptional simple Lie algebras were provided.

The definitions above offer, in our opinion, a general approach to the signature problem
which is conceptually simpler and which can be quite practical, given the development of
uniform and efficient methods of computing character values of elements of finite order on
irreducible representations [10, 22].

The purpose of this paper is to provide the signatures in a limited series of cases,
which have been studied in physics literature for many years in the context of various
applications. We consider all finite-dimensional representations of the de Sitter groups
SO(4, 1) and SO(3, 2).

We have two reasons for singling out these cases. First, the groups SO(4, 1) and SO(3, 2)
appeared in physics as the isometry groups of thede Sitter spaces, which have a nonzero
constant curvature, unlike the flat Minkowski spacetime [1–3]. The Lie algebras of the
de Sitter groups can be ‘deformed’ into the Poincaré Lie algebra by a procedure called
‘contraction’ [4, 5, 15]. It was pointed out that these are the only simple Lie algebras which
can be Wigner–In̈onü contracted into the Poincaré algebra [6]. Moreover, it was shown
in [5, 7] that all the ‘kinematical groups’ can be obtained by contractions of the de Sitter
groups.

Our second reason is that the answer can be given in a very efficient way as a generating
function for the signatures (i.e. for the corresponding character values) which are found
already in literature [11–13]. In this form signatures in other cases would also be feasible
to find. The structure of the generating function provides answers to uncommon related
questions like the following: How many distinct signature values one finds among all
the irreducible representations of the real form? What are these values? What are the
representations with a given value of signature? These questions can be answered using the
structure of the generating functions or by rearrangement of the terms in the power series
expansion of the generating function [11].

2. Signatures and character values

Let σλ: O(p, q)→ GL(V ) be the irreducible representation ofO(p, q) with highest weight
λ, on a spaceV . Denote its dimension bydλ and its weight system by�λ. Note that in the
casep+q = 5 the representationσλ with highest weightλ = (λ1, λ2) is orthogonal exactly
whenλ1, λ2 are non-negative integers andλ1 is even. The diagonal form of the symmetric
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bilinear invariantB on V reads

(x, y) = x tBλy with Bλ = Ipλ ⊕ (−Iqλ) for all x, y ∈ V. (2.1)

HereIn is then× n identity matrix, and the superscript t denotes transposition.
The following simple observation is the central argument of our approach. Any

automorphism ofO(p, q) induced by an elementX ∈ O(p, q) fixing the symmetric bilinear
form B has to fulfil)

XtBλX = Bλ.
Note thatBλ itself corresponds to such an element in the group and is of order two,
i.e. B2

λ = Ip+q .
The signature of the symmetric bilinear invariant ofλ,

sλ = pλ − qλ = Tr(Bλ) (2.2)

is the character value which the element represented byBλ takes on the representationλ.
It is clear that (2.2) and

dλ = pλ + qλ (2.3)

imply

pλ = 1
2(dλ + sλ) and qλ = 1

2(dλ − sλ). (2.4)

It is straightforward to get analogous quantities for direct sums and direct products of
representations. For the direct sum of two irreducible representationsλ⊕ µ, we have

pλ⊕µ = pλ + pµ qλ⊕µ = qλ + qµ sλ⊕µ = sλ + sµ dλ⊕µ = dλ + dµ (2.5)

and for the tensor productλ⊗ µ,

pλ⊗µ = pλpµ + qλqµ qλ⊗µ = pλqµ + qλpµ sλ⊗µ = sλsµ dλ⊗µ = dλdµ.
(2.6)

It is a remarkable fact that the signatures ofnon-compactreal forms (such as SO(4, 1)
and SO(3, 2)) can be obtained from the values of characters on elements of finite order of
their simply connectedcompactLie group (here, Sp(4)). The complexification of its Lie
algebra issp4(C) of type C2 with Cartan matrix

M =
(

2 −1
−2 2

)
. (2.7)

In terms of the simple rootsα1 andα2, the fundamental weights are

ω1 = (1, 0) = α1+ 1
2α2

ω2 = (0, 1) = α1+ α2. (2.8)

The highest weight3 = λ1ω1 + λ2ω2 which we write as3 = (λ1, λ2) corresponding to
the four-dimensional (symplectic) representation is3 = (1, 0), for the five-dimensional
(orthogonal) it is3 = (0, 1), and3 = (2, 0) for the ten-dimensional adjoint representation.

Now consider an irreducible finite-dimensional, analytic representationσ3 : Sp(4)→
GL(V ). ThenV can be decomposed into a direct sum of the weight spaces relative to a
(chosen and fixed) maximal torus of Sp(4) as

V =
⊕
λ∈�3

V λ. (2.9)

The character of this representationσ3 is defined by

χ3 : Sp(4) −→ C
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x 7−→ χ3(x) := Tr(σ3(x)). (2.10)

If x is an element of the maximal torus of Sp(4), then it can be written asx =
exp(2π ix),x ∈ sp4(C), so that

χ3(x) =
∑
λ∈�3

dimV λ e2π i〈λ,x〉 (2.11)

where〈·, ·〉 : sp4(C)∗ × sp4(C) → C is the canonical pairing (of the vector spacesp4(C)
and its dual). For our purposes,x is an element of finite order (EFO) [9, 10, section 4]. The
link between the value of a character on an EFO and the signature of a finite representation
of SU(n) has been considered in [10, section 9.2]. Results similar to ours can be derived
for other non-compact Lie groups.

3. Characters values on elements of finite order

As mentioned previously, we first consider the signatures as obtained from the character
values on specific EFOs. Here, we must look for the two EFO of the simply connected
compact simple Lie group Sp(4) which generate the signatures of the real forms of SO(4, 1)
and SO(3, 2). Because the characters are invariant under the adjoint action of Sp(4), we shall
be interested inconjugacy classesof EFOs. These classes are in one-to-one correspondence
with theKac’s coordinatess = [s0, s1, . . . , sl ] (l being the rank of the underlying groupK)
of non-negative integers with 1 being the greatest common divisor [9, 10, section 4]. These
numbers are attached to the nodes of the extended Coxeter–Dynkin diagram. The EFO has
within its conjugacy class a unique diagonal representative which acts on a weight space
V λ(λ =∑l

i=1 ciαi ∈ �3, αi being the positive simple roots,ci ∈ Q) of any representation
3 of K as)

v→ exp

(
2π i

M
〈λ, s〉

)
v v ∈ V λ. (3.1)

In the case ofsp4(C), for whichK = Sp(4), one hasl = 2 and

M = s0+ 2s1+ s2. (3.2)

The expression〈λ, s〉 (whereλ = c1α1+ c2α2) is evaluated through〈αi, s〉 = si , so that

〈λ, s〉 = c1s1+ c2s2. (3.3)

Hereafter, we shall denote the value of thecharacterχ3 on the elements = [s0, s1, s2] in
the representation3 = (λ1, λ2) by χ(λ1,λ2)([s0, s1, s2]).

As mentioned in [12], the characters of some EFOs can be interpreted as generators of
the signatures of representations of the non-compact real forms. It is easy to find which EFO
generates the signatures of a given real form, by looking at the defining five-dimensional
representationσ(0,1). For this representation, the diagonal representative of the conjugacy
class of the EFO denoteds = [s0, s1, s2] is

diag(µs1+s2, µs1, µ0, µ−s1, µ−(s1+s2)) (3.4)

with µ = exp(2π i/M). From (3.2), we see that the two classes of EFOs which provide us
with the signatures ares = [0, 1, 0] and [1, 0, 1]. Upon substitution into (3.4) we get, for
s = [0, 1, 0],

diag(−1,−1, 1,−1,−1) (3.5)

which corresponds to SO(4, 1), and fors = [1, 0, 1],

diag(−1, 1, 1, 1,−1) (3.6)
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which leads to SO(3, 2). We note that there is a different sign between the diagonal
representative of the EFO, and the corresponding bilinear form. This sign is immaterial
for our needs as the resulting groups SO(2, 3) (respectively SO(1, 4)) are isomorphic to
SO(3, 2) (respectively SO(4, 1)) and, therefore, so is the sign of the signature itself.

To summarize, the correspondence between the EFOs and the non-compact real form
whose signature the EFO’s character generator is associated with is

s = [0, 1, 0]↔ SO(4, 1)

s = [1, 0, 1]↔ SO(3, 2). (3.7)

Up to a factor of−1, the character value of the representation3 = (λ1, λ2) on an EFOs
is given by

χ(λ1,λ2)(s) =
∑
λ∈�3

exp

(
2π i〈λ, s〉

M

)
(3.8)

with s as in (3.7). For instance, for the four-dimensional representation3 = (1, 0), we get,
using (3.8)

χ(1,0)(s) = exp

[
2π i

M

(
s1+ s2

2

)]
+ exp

[
2π i

M

( s2
2

)]
+ exp

[
−2π i

M

( s2
2

)]
+ exp

[
−2πi

M

(
s1+ s2

2

)]
= 2 cos

[
2π

M

(
s1+ s2

2

)]
+ 2 cos

[
2π

M

( s2
2

)]
(3.9)

so that

χ(1,0)([0, 1, 0]) = 0= χ(1,0)([1, 0, 1]).

Thus, the signature of the four-dimensional symplectic representation is zero for both de
Sitter groups.

For the five-dimensional representation3 = (0, 1), we have

χ(0,1)(s) = exp

[
2π i

M
(s1+ s2)

]
+ exp

[
2π i

M
(s1)

]
+ exp[0]+ exp

[
−2π i

M
(s1)

]
+ exp

[
−2π i

M
(s1+ s2)

]
= 1+ 2 cos

[
2π

M
(s1+ s2)

]
+ 2 cos

[
2π

M
(s1)

]
(3.10)

so that

χ(0,1)([0, 1, 0]) = −3 χ(0,1)([1, 0, 1]) = 1.

For the adjoint representation3 = (2, 0), the equation (3.8) gives

χ(2,0)(s) = 2

{
cos

[
2π

M
(2s1+s2)

]
+cos

[
2π

M
(s1+s2)

]
+cos

[
2π

M
s1

]
+cos

[
2π

M
s2

]
+1

}
(3.11)

so that

χ(2,0)([0, 1, 0]) = 2= −χ(2,0)([1, 0, 1]).

However, this approach is very tedious when it comes to higher-dimensional
representations. Then, it is useful to decompose the representation space into a sum over
Weyl group orbits as

V 3 =
⊕
λ∈�3

V λ =
k⊕

j=1

VWµj whereVWµj :=
⊕
ν∈Wµj

V ν (3.12)
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whereWµj is an orbit in�3, that is, a set of weights such that for anyλ, λ′ ∈ Wλj , there
exists an elementw of the Weyl groupW of sp4(C), such thatλ′ = w(λ). Each orbitWµj
is labelled by its (unique) dominant weightµj . Thek in (3.12) is the number of Weyl group
orbits in the representation or the number of dominant weights in its weight system. Our
construction is based on the fact thatall V µ, µ ∈ Wµj have the same dimensionm

µj
3 and

thus (3.8) can be cast into the form

s�3 = χ3([s0, s1, s2]) =
k∑

j=1

m
µj
3 sWµj (3.13)

where

sWµj =
∑
µ∈Wµj

exp

(
2π i

M
〈µ, s〉

)
(3.14)

is the signature of the orbit andm
µj
3 is its multiplicity, (i.e. the dimension ofV µj ).

Multiplicities can be efficiently calculated [16] or found in tables, for example, in [14].
The Lie algebrasp4(C) admits four types of Weyl group orbits, represented by their

dominant weights:

(0, 0), (a,0), (0, b), (c, d), wherea, b, c, d ∈ N− {0}. (3.15)

The contributionsWµj of the orbitWµj to the character value is found as indicated by
(3.14). Consider, for instance, the detailed calculation ofsW(a,0). Using (3.8), we find

sW(a,0) = exp

[
2π ia

M

(
s1+ s2

2

)]
+ exp

[
2π ia

M

( s2
2

)]
+ exp

[
−2π ia

M

( s2
2

)]
+ exp

[
−2π ia

M

(
s1+ s2

2

)]
= 2 cos

[
2πa

M

(
s1+ s2

2

)]
+ 2 cos

[
2πa

M

( s2
2

)]
(3.16)

so that, for SO(4, 1), we get

sW(a,0)([0, 1, 0]) = 2 cos(πa)+ 2

=
{

4 for a even

0 for a odd

= 2[1+ (−1)a]. (3.17)

For SO(3, 2), we have

sW(a,0)([1, 0, 1]) = 4 cos
(πa

2

)
=


4 for a/2 even

−4 for a/2 odd

0 for a odd

= 2[1+ (−1)a](−1)a/2. (3.18)

Proceeding similarly with the other orbits in (3.15), we have the characters displayed in
table 1.

Another convenient way to compute the characters of representations of simple Lie
groups is to use the generating functions called ‘character generators’. Here again, this
is from some EFOs’ character generators that we can find the signatures. Depending on
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Table 1. Character formulae for Weyl group orbits.

Orbit s = [0, 1, 0] s = [1, 0, 1]

〈0, 0〉Ws 1 1
〈a, 0〉Ws 2[1+ (−1)a ] 2[1+ (−1)a ](−1)a/2

〈0, b〉Ws 4(−1)b 2[1+ (−1)b]
〈c, d〉Ws 4[1+ (−1)c](−1)d 2[1+ (−1)c][1 + (−1)d ](−1)c/2

the EFO, we will find the signatures of SO(4, 1), or the signatures of SO(3, 2). From the
table V of [12], the character generators of interest are

SO(4, 1) :
(1+ A2B)

(1− A2)2(1+ B)3 (3.19)

and

SO(3, 2) :
(1+ B)(1+ A2B)

(1+ A2)2(1− B2)2
. (3.20)

The signature of the representation3 = (λ1, λ2) is equal to the coefficient of the term
Aλ1Bλ2 in the power expansion of the appropriate generating function (3.19) or (3.20). This
procedure too can be very tedious in practice.

4. Signature formulae and examples

If we decompose the irreducible representationV = V 3 with highest weight3 into its
different kinds of Weyl group orbits

V 3 =
k⊕

j=1

VWµj

= V (0,0) ⊕
⊕

µj of form (a,0)

V (a,0) ⊕
⊕

µj of form (0,b)

V (0,b) ⊕
⊕

µj of form (c,d)

V (c,d) (4.1)

we find that the signature formula for SO(4, 1) is

s
SO(4,1)
3 = m(0,0)3 + 2

∑
(a,0)∈{µ1,...,µk}

[m(a,0)3 [1+ (−1)a]] + 4
∑

(0,b)∈{µ1,...,µk}
[m(0,b)3 (−1)b]

+4
∑

(c,d)∈{µ1,...,µk}
[m(c,d)3 [1+ (−1)c](−1)d ] (4.2)

and for SO(3, 2), it is

s
SO(3,2)
3 = m(0,0)3 + 2

∑
(a,0)∈{µ1,...,µk}

[m(a,0)3 [1+ (−1)a](−1)a/2] + 2
∑

(0,b)∈{µ1,...,µk}
[m(0,b)3 [1+ (−1)b]]

+2
∑

(c,d)∈{µ1,...,µk}
[m(c,d)3 [1+ (−1)c] [1 + (−1)d ] (−1)c/2]. (4.3)

The summation is taken over all the orbits. The signature formulae (4.2) and (4.3) are the
central result of our paper.

We now turn to some specific examples by using the methods described in the previous
section. First consider the case of the four-dimensional representation3 = (1, 0). We have
seen that the EFO characters provide a zero signature for both de Sitter groups (see below
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(3.8)). Let us recover this result by using the generating functions (3.19) and (3.20). To do
so, we shall use repeatedly the power expansion

1

1+ x =
∞∑
k=0

(−x)k

= 1− x + x2− x3+ x4−+ · · · | x |< 1. (4.4)

For the four-dimensional representation3 = (1, 0), we must look for the coefficient
of the termA in (3.19) and (3.20). It is clear that for both generating functions, theA

expansion begins a quadratic term, so that the coefficient ofA (and therefore the signature
of the representation) is zero, as obtained in (3.10).

For the five-dimensional representation3 = (0, 1), we have obtained the signature−3
for SO(4, 1), and 1 for SO(3, 2). We must look for the coefficient ofB in the expansion of
character generators. For SO(4, 1), we expand (3.19). The only chance to get a term inB

is by expanding the(1+ B)3 in the denominator. We have

(1+ B)−3 = (1+ 3B + 3B2+ B3)−1

≈ 1− 3B − 3B2− B3− · · · (4.5)

so that the signature is−3, as expected. For SO(3, 2), we use (3.20). We get a term inB
by considering the(1+B) in the numerator, so that we get at once the value+1, which is
the signature already obtained.

Our last example consists in the adjoint representation3 = (2, 0), for which we obtained
the signature 2 for SO(4, 1), and−2 for SO(3, 2) (see below (3.11)). For SO(4, 1), we look
for terms inA2 in (3.19). The only possibility is through the term(1−A2)−2, which gives

(1− A2)−2 = (1− 2A2+ A4)−1

≈ 1+ 2A2 (4.6)

which provides 2 as the signature. For SO(3,2), we expand the term(1+ A2)−2 of (3.20),
to obtain

(1+ A2)−2 = (1+ 2A2+ A4)−1

≈ 1− 2A2 (4.7)

so that we get−2.
We close this section by writing down explicitly the values ofp3, q3, s3 and d3 for

direct sums and tensor products of a four-dimensional and a five-dimensional representation,
by using (2.4)–(2.6). For SO(4, 1), we get for the direct sum(1, 0)⊕ (0, 1)

s3 = −3 d3 = 9 p3 = 3 q3 = 6 (4.8)

and for the tensor product(1, 0)⊗ (0, 1)

s3 = 0 d3 = 20 p3 = 10 q3 = 10. (4.9)

For SO(3, 2), the direct sum(1, 0)⊕ (0, 1) has properties

s3 = 1 d3 = 9 p3 = 5 q3 = 4 (4.10)

and for the tensor product(1, 0)⊗ (0, 1), we get the same results as in (4.9).
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