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Abstract. The signature of a finite-dimensional orthogonal representation of a simple Lie
group is the difference between the number of positive and negative signs in the diagonal form
of its symmetric bilinear invariant. We derive the expressions for the signatures of all finite-
dimensional representations of the de Sitter groups SO(@nd SO(32) in two ways. One by
means of character values of appropriate elements of adjoint order two on the representation
and the other through generating functions.

1. Introduction

Let us first define the signature of a finite-dimensional representation of a simple Lie algebra
over the complex or real field in a way which is more general than our immediate needs
and more general than the traditional definition.

A signature of an irreducible representatianof a simple Lie algebrd. overC is the
character value o of an (inner) automorphism df whose adjoint order is two.

Note that under the definition such a Lie algebra has several sighatures associated with it
if its rank is greater than one. Indeed, for each conjugacy class of the automorphisms there
is one signature. In the traditional way, the signatures are associated with hon-compact real
forms of simple Lie algebras. It is well known that there is a one-to-one correspondence
between conjugacy classes of the automorphisms of order two of the algebra€)@red
the real forms of the simple Lie algebra. We call each such automorphisrdefivéng
automorphismfor the corresponding real form. In case a real form corresponds to a inner
automorphism, i.e. the automorphism is induced by an element of the underlying group,
then the definition above can be extended to the signature of a real form as follows.

The signature of an irreducible representation of a real form is the character value of
the element defining the automorphism on the representation.
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Even that is not always the traditional signature. For two reasons. It is defined for
all representations not only those with a symmetric bilinear invariant form (orthogonal
representations), and it may differ from the usual definition by a phase factor. (There is an
ambiguity of only a sign in the traditional definition of the signature.)

In order to make use of such a definition, one needs to be familiar with the general
description of the automorphims of finite order and their action on representation spaces.
Such a description is available [10] but it is not reproduced here in full generality since
only a very special part of it is needed for our purposes in this paper. Nevertheless, we
will draw on it when recalling these automorphisms. In addition, one needs to know which
representations are orthogonal or symplectic or neither of the two. That information is
readily available since the work of Dynkin [23], in particular see [24, p 5].

The question about signatures in some degree of generality (for all orthogonal
representations of Lie algebras of a particular type) was first raised in [8]. Recently in
a series of overlapping papers [17-21] another approach to the problem was taken and,
in principle, signatures of orthogonal representations of the real forms (defined by inner
automorphisms of order 2) of the classical Lie algebras as well as of the real forms of the
exceptional simple Lie algebras were provided.

The definitions above offer, in our opinion, a general approach to the signature problem
which is conceptually simpler and which can be quite practical, given the development of
uniform and efficient methods of computing character values of elements of finite order on
irreducible representations [10, 22].

The purpose of this paper is to provide the signatures in a limited series of cases,
which have been studied in physics literature for many years in the context of various
applications. We consider all finite-dimensional representations of the de Sitter groups
SO(4 1) and SO(32).

We have two reasons for singling out these cases. First, the groupsS@tt SO(32)
appeared in physics as the isometry groups ofddeSitter spaceswvhich have a nonzero
constant curvature, unlike the flat Minkowski spacetime [1-3]. The Lie algebras of the
de Sitter groups can be ‘deformed’ into the Poilkchie algebra by a procedure called
‘contraction’ [4, 5, 15]. It was pointed out that these are the only simple Lie algebras which
can be Wigner—lani contracted into the Poindaralgebra [6]. Moreover, it was shown
in [5,7] that all the ‘kinematical groups’ can be obtained by contractions of the de Sitter
groups.

Our second reason is that the answer can be given in a very efficient way as a generating
function for the signatures (i.e. for the corresponding character values) which are found
already in literature [11-13]. In this form signatures in other cases would also be feasible
to find. The structure of the generating function provides answers to uncommon related
guestions like the following: How many distinct signature values one finds among all
the irreducible representations of the real form? What are these values? What are the
representations with a given value of signature? These questions can be answered using the
structure of the generating functions or by rearrangement of the terms in the power series
expansion of the generating function [11].

2. Signatures and character values

Letoy: O(p,q) — GL(V) be the irreducible representation @f p, ¢) with highest weight
A, on a spacé/. Denote its dimension by, and its weight system b, . Note that in the
casep +q = 5 the representatios, with highest weight. = (A1, 1) is orthogonal exactly
wheni;, Ay are non-negative integers ang is even. The diagonal form of the symmetric
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bilinear invariantB on V reads
(x,y) =x'B;y with B, = 1,, & (—1,,) forallx,yeV. (2.1)

Here I, is then x n identity matrix, and the superscript t denotes transposition.

The following simple observation is the central argument of our approach. Any
automorphism oD (p, ¢) induced by an elemerif € O(p, q) fixing the symmetric bilinear
form B has to fulfil)

X'B,X = B,.
Note that B;, itself corresponds to such an element in the group and is of order two,
i€ BZ=1,.,.
The signature of the symmetric bilinear invariant\gf
S) = Pr— g = Tr(B,\) (22)

is the character value which the element representeft;bgkes on the representatian
It is clear that (2.2) and
d, = prtq. (2.3)
imply
pr = 3(dy +55) and ¢ = 3(d5. — 53). (2.4)
It is straightforward to get analogous quantities for direct sums and direct products of
representations. For the direct sum of two irreducible representationg, we have
DProp = Pr.+ Pu Gop = 0.+ qu Siep = Sx + Sy dou=d.+d, (2.5)
and for the tensor produét® p,
Drgu = PrPu + @1qpu Qrop = Prdu + @ Du Sieu = SaSu drou = dxdu-(z .

It is a remarkable fact that the signaturesnoin-compacteal forms (such as SO(2)
and SO(32)) can be obtained from the values of characters on elements of finite order of
their simply connected¢ompactLie group (here, S@)). The complexification of its Lie
algebra issp,(C) of type G with Cartan matrix

M= (_22 ‘21). 2.7)

In terms of the simple roots; anda;, the fundamental weights are

w1=1,0=a1+ %Olz

wr=(0,1) = a1 + ap. (2.8)
The highest weightA = A1 + Aow2 Which we write asA = (A1, A2) corresponding to
the four-dimensional (symplectic) representationAis= (1, 0), for the five-dimensional
(orthogonal) it isA = (0, 1), and A = (2, 0) for the ten-dimensional adjoint representation.

Now consider an irreducible finite-dimensional, analytic representation Sp(4) —

GL(V). ThenV can be decomposed into a direct sum of the weight spaces relative to a
(chosen and fixed) maximal torus of @p as

V=@ v~ (2.9)

reQp
The character of this representatiop is defined by

XA Sq4) — (C



7466 S Grimm et al

x > xa(x) 1= Tr(oa(x)). (2.10)

If x is an element of the maximal torus of Sp(4), then it can be writtenx as-
expi2rix), x € sp,(C), so that

xa(x) =Y dimy* et (2.11)

LEQ

where (-, ) : sp,(C)* x sp4(C) — C is the canonical pairing (of the vector spagg(C)
and its dual). For our purposesjs an element of finite order (EFO) [9, 10, section 4]. The
link between the value of a character on an EFO and the signature of a finite representation
of SU(n) has been considered in [10, section 9.2]. Results similar to ours can be derived
for other non-compact Lie groups.

3. Characters values on elements of finite order

As mentioned previously, we first consider the signatures as obtained from the character
values on specific EFOs. Here, we must look for the two EFO of the simply connected
compact simple Lie group $f) which generate the signatures of the real forms of SO\4

and SO(32). Because the characters are invariant under the adjoint actiori4 8 shall

be interested imonjugacy classesf EFOs. These classes are in one-to-one correspondence
with the Kac’s coordinatess = [so, s1, . - ., 5;] (I being the rank of the underlying group)

of non-negative integers with 1 being the greatest common divisor [9, 10, section 4]. These
numbers are attached to the nodes of the extended Coxeter—Dynkin diagram. The EFO has
within its conjugacy class a unique diagonal representative which acts on a weight space
VP = Zﬁzl cia; € Q4, a; being the positive simple roots; € Q) of any representation

A of K as)

v— exp(ZMm(A, s)) v veVh (3.2)
In the case ofp,(C), for which K = Sp(4), one had = 2 and

M = 5o+ 251 + s2. 3.2
The expressiona, s) (whered = c1a; + c2a2) is evaluated throughe;, s) = s;, so that

(A, 8) = c151 + c285. (3.3)

Hereafter, we shall denote the value of dtearacter y, on the elemens = [so, 51, s2] In
the representationh = (A1, A2) BY x@,1.1,) ([S0, 51, 52]).

As mentioned in [12], the characters of some EFOs can be interpreted as generators of
the signatures of representations of the non-compact real forms. It is easy to find which EFO
generates the signatures of a given real form, by looking at the defining five-dimensional
representatiow 7). For this representation, the diagonal representative of the conjugacy
class of the EFO denotesl= [so, 51, 52] IS

diag(u““z, Msl’ MO, //L_Sls M—(s1+sz)) (34)
with © = exp(27i/M). From (3.2), we see that the two classes of EFOs which provide us

with the signatures are = [0, 1, 0] and [, O, 1]. Upon substitution into (3.4) we get, for
s=10,1,0],

diag-—-1, -1,1, -1, -1 (3.5)
which corresponds to SO(4), and fors = [1, 0, 1],
diag—1,1,1,1, —1) (3.6)
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which leads to SO(3®). We note that there is a different sign between the diagonal
representative of the EFO, and the corresponding bilinear form. This sign is immaterial
for our needs as the resulting groups S@R(respectively SO(14)) are isomorphic to
SO(3 2) (respectively SO(4L)) and, therefore, so is the sign of the signature itself.

To summarize, the correspondence between the EFOs and the non-compact real form
whose signature the EFO’s character generator is associated with is

s=[0,1,0] < S04, 1)

s=1[1,0,1] < SQ@S, 2. (3.7)
Up to a factor of—1, the character value of the representatior= (11, A2) on an EFOs
is given by

2 (2.,
X () = D eXp<m<S>) (3.8)

LEQ M

with s as in (3.7). For instance, for the four-dimensional representatien(1, 0), we get,
using (3.8)

Xa,0(s) = eXP[ZMni (S1 + s;)} + exp[sz (SZZ)} + exp[—sz (SZZ)]

+exp[—2;y (sl + s;)} = Zcos[ij; (s1 + Szz)} + 2005[21; (szz)]

so that

x1,0(0,1,0]) =0= xa10(1,0,1)].

Thus, the signature of the four-dimensional symplectic representation is zero for both de
Sitter groups.
For the five-dimensional representatian= (0, 1), we have

27i 2 27i
X0 (8) = exp[M(sl + Sz)] + exp[M(sl)] + exp[0] + exp[—M(sl)}

2mi 2 2
+ exp[—M(sl + s2):| =1+2 cos[M (s1+ sz)i| +2 cos[M(sl)} (3.10)
so that

xo01([0,1,0]) =-3 xon(1,0,1]) =1
For the adjoint representation = (2, 0), the equation (3.8) gives

= 24cC0S 2 2s cos 2 cos 2 cos 2 1
Xeo(s) = ﬁ( 1+s2) |+ ﬁ(S1+Sz) + 2w + e +
(3.11)
so that
x20(0,1,0]) =2=—x20([1,0,1)]).

However, this approach is very tedious when it comes to higher-dimensional
representations. Then, it is useful to decompose the representation space into a sum over
Weyl group orbits as

k
vi=P Vv = GBIVW"" whereV" == (B v* (3.12)
j:

reQA
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whereWyu; is an orbit inQ2,, that is, a set of weights such that for akyr.’ € Wa;, there
exists an element of the Weyl groupW of sp,(C), such that’ = w(i). Each orbitW u;

is labelled by its (unique) dominant weight. Thek in (3.12) is the number of Weyl group
orbits in the representation or the number of dominant weights in its weight system. Our
construction is based on the fact tret V*, 1 € Wy, have the same dimension,’ and

thus (3.8) can be cast into the form

k

sa, = xa(lso, s1,52) = ) mYswy, (3.13)
i=1
where
2mi
Swu = Y eXp<M(M, s>> (3.14)
neWwu;

is the signature of the orbit andz’f\" is its multiplicity, (i.e. the dimension ofV#).
Multiplicities can be efficiently calculated [16] or found in tables, for example, in [14].

The Lie algebrasp,(C) admits four types of Weyl group orbits, represented by their
dominant weights:

(0,0, (a,0), (0, b), (c,d), wherea, b, c,d € N — {0}. (3.15)

The contributionsy,,; of the orbit Wu; to the character value is found as indicated by
(3.14). Consider, for instance, the detailed calculatiospf, o). Using (3.8), we find

e menf 5 s )] ()] o] 5 )

+exp[—27;4ia (s1 + szz)} = Zcos[hMa (sl + Szz)} + Zcos[ana (”;2)]

(3.16)
so that, for SO(41), we get
Sw.0([0,1,0]) =2cosma) + 2
4 for a even
B {0 for a odd
= 2[1+ (-D“]. (3.17)
For SO(32), we have
Sw,0([1,0,1]) = 4COS(7T—2a)
4 for a/2 even
=414 for a/2 odd
0 for a odd
= 2[1+ (D))= (3.18)

Proceeding similarly with the other orbits in (3.15), we have the characters displayed in
table 1.

Another convenient way to compute the characters of representations of simple Lie
groups is to use the generating functions called ‘character generators’. Here again, this
is from some EFOs’ character generators that we can find the signatures. Depending on
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Table 1. Character formulae for Weyl group orbits.

Orbit s=10[0,1,0] s=1[1,0,1]

0,00 1 1

@0 21+ 19 2[1 + (=) (—D)*/?

©.p)Y  4a-1? 2[1+ (-]

e.d)¥ A1+ DN-DY 2+ (DL + (D (-D)/?

the EFO, we will find the signatures of SO, or the signatures of SO(3). From the

table V of [12], the character generators of interest are
(1+ A?B)

(1- A2)2(1+ B)3

S04, 1) : (3.19)

and

(1+ B)(1+ A%B)
(1+ A%)2(1 - B?)?’
The signature of the representation = (11, Ap) is equal to the coefficient of the term

A’ B*2 in the power expansion of the appropriate generating function (3.19) or (3.20). This
procedure too can be very tedious in practice.

S03,2)

(3.20)

4. Signature formulae and examples

If we decompose the irreducible representation= V* with highest weightA into its
different kinds of Weyl group orbits

k

VA — @ VW;A/'
j=1
=y00 g @ y @0 g @ y0H g @ yed (4.1)
u; of form (a,0) w; of form (0,b) w; of form (c,d)
we find that the signature formula for SO is
itV =m(% 42 37 mO+ DT +4 Y [T

(@,00{p1, -, 1t} O.b)efpea, - i}
+4 ) Imy I+ (—D(=D] (4.2)

(c,d)e{pr, ... i}

and for SO(32), it is
5302 =m0 +2 3 O+ CDIED 2 Y P+ (D))

(a,0)e{i1,....pux} 0,b)efia,.... pux}
+2 3 5O+ (DT + (-1 (—D7. (4.3)

(c.d)e{p1,.. pux}

The summation is taken over all the orbits. The signature formulae (4.2) and (4.3) are the
central result of our paper.

We now turn to some specific examples by using the methods described in the previous
section. First consider the case of the four-dimensional representatioril, 0). We have
seen that the EFO characters provide a zero signature for both de Sitter groups (see below
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(3.8)). Let us recover this result by using the generating functions (3.19) and (3.20). To do
so, we shall use repeatedly the power expansion

1 i X
e ;("”

=1—-x+x2-x34x*—+... | x |< 1 4.4

For the four-dimensional representation= (1, 0), we must look for the coefficient
of the termA in (3.19) and (3.20). It is clear that for both generating functions, Ahe
expansion begins a quadratic term, so that the coefficient @nd therefore the signature
of the representation) is zero, as obtained in (3.10).

For the five-dimensional representatian= (0, 1), we have obtained the signature
for SO(4 1), and 1 for SO(32). We must look for the coefficient a8 in the expansion of
character generators. For SQO14, we expand (3.19). The only chance to get a tern®in
is by expanding th&l + B)? in the denominator. We have

(14 B) 3= 1+3B+3B2+ B31
~1-3B—3B>—B%—... (4.5)
so that the signature is3, as expected. For SQ(3), we use (3.20). We get a term &
by considering thé1 + B) in the numerator, so that we get at once the valde which is
the signature already obtained.

Our last example consists in the adjoint representatiea (2, 0), for which we obtained
the signature 2 for SO(4), and—2 for SO(3 2) (see below (3.11)). For SQ(#), we look
for terms inA2 in (3.19). The only possibility is through the terth — A%)~2, which gives

(1—AH2=(1-24%+4%H71
~ 1+ 247 (4.6)
which provides 2 as the signature. For SO(3,2), we expand the(tesma?)~2 of (3.20),
to obtain
1+ A= (14247 + 497
~1— 242 4.7
so that we get-2.
We close this section by writing down explicitly the valuesmf, g, sa andd, for

direct sums and tensor products of a four-dimensional and a five-dimensional representation,
by using (2.4)—(2.6). For SO(4), we get for the direct sur(, 0) & (0, 1)

sp=-3 dy =9 pa =3 gy =6 (4.8)
and for the tensor produ¢t, 0) ® (0, 1)

sp =0 dy =20 pa =10 gs = 10. (4.9)
For SO(32), the direct sum1, 0) & (0, 1) has properties

sa=1 dy =9 pa =5 gy =4 (4.10)

and for the tensor product, 0) ® (0, 1), we get the same results as in (4.9).

Acknowledgments

SG was partially supported by the Schweizerischer Nationalfonds. The works of MdM and
JP were supported in part by the Natural Sciences and Engineering Research Council of
Canada and the work of JP was also supported in part by the FCAR of Quebec.



The signatures of representations of SO(4, 1) and SO(3, 2) 7471

References

(1]
(2]

(3]
(4]

(5]
(6]
(7]

(8]

El
(10]

(11]

(12]
(13]
[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]
(23]
[24]

de Sitter W 1917 On Einstein’s theory of gravitation and its astronomical consequbtmgh. Not. R.
Astron. Soc78 3-28

Gursey F 1964 Introduction to the de Sitter groBpup Theoretical Concepts and Methods in Elementary
Particle Physicsed F Qirsey (Gordon & Breach) pp 365-89

Ibragimov N H 1990 Dynamics in de Sitter spa€geprint (in Russian)

Indnll E and Wigne E P 1953 On the contraction of groups and their representaBoos Natl Acad. Sci.
US39510-24

In6ni E and Wigne E P 1954 On a particular type of convergence to a singular matgg. Natl Acad. Sci.
US40 119-21

Bacry H and levy-Leblord J M 1968 Possible kinematics Math. Phys9 1605-14

Lévy-Nahas M 1967 Deformations and contractions of Lie algebradath. Phys8 1211-22

de Montigny M, Patera J and Tolar J 1994 Graded contractions and kinematical groups of space-time
J. Math. Phys. 35 405-25

Patera J and ShaRR T 1982 Signatures of all finite representations of 84), p + g < 4 Kinam4 93-8

Patera J and ShaiR T 1984 Signatures of finite Sy, ¢) representationd. Math. Phys25 2128-31

Kac V G 1969 Automorphisms of finite order of semi-simple Lie algelifaact. Anal. Appl3 252—-4

Moody R V and Patera J 1984 Characters of elements of finite order in Lie g®idpd J. Alg. Disc. Meth.
5 359-83

Patera J and SharR T 1980 Generating Functions for Characters of Group Representations and Their
Applications (Lecture Notes in Physics 9few York: Springer) pp 175-83

Patera J and ShaR T 1980 Generating functions for plethysms of finite and continuous grbuplys. A:
Math. Gen.13 397-416

Moody R V, Patera J and Sharp R 1983 Character generators for elements of finite order in simple Lie groups
A1, Ap, A3, B2 and Go J. Math. Phy824 2387-97

Kac V 1980Simple Lie Groups and the Legendre Symbol (Lecture Notes in Mathematic$N\g8)York:
Springer)

Bremner M, Moo@ R V and Patera J 198%ables of Dominant Weight Multiplicities for Representations of
Simple Lie AlgebragNew York: Dekker)

Gilmore R 1974Lie Groups, Lie Algebras and Some of Their Applicati¢lsw York: Wiley) ch 10

Moody R V and Patera J 1982 Fast recursion formula for weight multiplicBielt Am. Math. Soc7 237-42

Rudy A N 1992 Subalgebras of the algebras;suf) which are real forms of algebras of ty@ Vest. Acad.
Nauk Belorussia, Series Phys.—Ma#+4 33—40 (in Russian)

Rudy A N 1993 Signatures of finite representation of real, simple Lie algebrBfys. A: Math. Gen26
5873-80

Rudy A N 1994 Signatures of finite exceptional Lie algebra representafidhkys. A: Math. Ger27 6403-19

Rudy A N 1995 Signatures of finite classical Lie algebra representatloRbiys. A: Math. Ger28 1641-53

Rudy A N 1996 Signatures of finite Elll, EVI, EVII, EVIII representatiodsPhys. A: Math. Ger292211-23

Grimm S On orbit sums values of elements of finite orBezprint

Dynkin E B 1965 Maximal subgroups of the classical grodd4S Trans(Series 2)6 245-378

McKay W G and Patera J 198lables of Dimensions, Indices and Branching Rules for Representations of
Simple Lie AlgebragNew York: Dekker)



